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ABSTRACT

An F/A- 18 aircraft was modified to perform flight research at high angles of attack (AOA) using thrust vectoring

and advanced control law concepts for agility and performance enhancement and to provide a testbed for the

computational fluid dynamics community. Aeroservoelastic (ASE) characteristics had changed considerably from
the baseline F/A-18 aircraft because of structural and flight control system amendments, so analyses and flight tests

were performed to verify structural stability at high AOA. Detailed actuator models that consider the physical,
electrical, and mechanical elements of actuation and its installation on the airframe were employed in the analysis

to accurately model the coupled dynamics of the airframe, actuators, and control surfaces. This report describes the

ASE modeling procedure, ground test validation, flight test clearance, and test data analysis for the reconfigured
F/A-18 aircraft. Multivariable ASE stability margins are calculated from flight data and compared to analytical

margins. Because this thrust-vectoring configuration uses exhaust vanes to vector the thrust, the modeling issues

are nearly identical for modem multiaxis nozzle configurations. This report correlates analysis results with flight
test data and makes observations concerning the application of the linear predictions to thrust-vectoring and

high-AOA flight.

NOMENCLATURE

A/D

AOA

ASE

DFRC

FEM

G

GVT

HARV

HOM

INS

KEAS

LOM

m 0

MDOF

MIMO

Ny

NASA

OBES

P

r

RFCS

RSRI

s

SDOF

SISO

STARS

TVCS

analog to digital

angle of attack, deg

aeroservoelastic

Dryden Flight Research Center, Edwards, California

finite-element model

gravitational acceleration

ground vibration test

High Angle of Attack Research Vehicle

high-order actuator model

inertial navigation system

knots equivalent airspeed

low-order actuator model

surface mass

multiple degrees of freedom

multi -input-multi -output

lateral acceleration, Hz

National Aeronautics and Space Administration

onboard excitation system

roll rate, Hz

yaw rate, Hz

research flight control system

roll stick to rudder interconnect

Laplace variable

single degree of freedom

single-input-single-output

structured and aeroservoelastic analysis routines

thrust-vectoring control system



V true velocity

ZOH zero order hold

t_ angle of attack, deg

angle of sideslip, deg

A complex perturbation

_5 control-surface displacement

_i control-surface rate

l"la actuator state

1"1e flexible-mode state

fir rigid-body state

0 pitch angle, deg

la multivariable stability margin

0 roll angle, deg

co vibration frequency

INTRODUCTION

Agility, performance requirements, and quest for a better understanding of aerodynamics by computational fluid

dynamicists have stimulated the aerospace community to earnestly pursue high-angle-of-attack (AOA) flight.
Modern fighter aircraft are being built or reconfigured for enhanced controllability and maneuverability in stalled

and poststalled flight regimes. The demanding flight control tasks at these conditions introduce some elements of

uncertainty in the modeling of aircraft dynamics.

The aeroservoelastic (ASE) dynamics include the coupling of structural dynamics, control dynamics, sensing,

aerodynamics, and actuation. Structural dynamics can be accurately, although laboriously, modeled and validated

with ground test data. Because the primary errors in control feedback sensing come from airdata measurements,
calibration is necessary to quantify the affects of these measurements on the integrity of the system and to make
corrections so that feedback can also be reliably modeled. Aerodynamics and actuation are the remaining

components of the modeling process.

Linear ASE predictions are suspect even at moderate AOA because they are based on linear assumptions of

potential flow, elastic dynamics, and control dynamics. Vorticity and separation in the airflow violate the

presumptions of the analysis. In addition, extreme static loads, asymmetric or random aerodynamic disturbances,
nonlinear actuator dynamics, and unexpected coupling mechanisms are possible sources of deviation from

predictions based on conventional unsteady aerodynamic and actuator modeling. Multirate control laws with digital

notch filters require careful formulation of the sampled data system response and derivation of stability estimates.

The extrapolation of linear methods at moderate and especially high AOA is empirical at best and should be verified
with test data.

At many flight conditions, unsteady measured data are generally not available, and more precise modeling with

computational fluid dynamics codes is not feasible for predicting aeroelastic phenomena. Engine thrust vectoring is

a promising technology to compensate for the loss of aerodynamic control power but introduces another coupling
mechanism in the form of propulsive forces that propagate through the fuselage where the feedback sensors are

located. The engine exhaust plume states, which are difficult to determine for a variety of flight conditions, power
levels, and exhaust conditions such as turning vane displacements, nozzle area, and unsteady flow, create a source

of uncertainty.
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ASEstabilityanalysesat predominantly low AOA have been reported for advanced aircraft, such as the X-29A

Advanced Technology Demonstrator (refs. 1 and 2) and F-15 STOL Maneuver Technology Demonstrator (ref. 3),

but few published works have addressed ASE modeling issues for thrust-vectored configurations or high-AOA flight.

The primary modeling issues are as follows:

1. Capability of the finite-element model (FEM) to capture primary structural dynamics, especially at feedback

sensor locations

2. Fidelity of actuator modeling necessary to correlate with ground tests and for analysis at any flight condition

3. Discretization techniques for multirate control laws

4. Complexity of aerodynamic modeling necessary to capture critical dynamics related to structural stability

5. Effect of propulsive forces, buffet, separation, and other high-AOA aerodynamic uncertainties on predicted

stability levels

6. Types of flight-derived stability estimates required for model validation at high AOA

The first four concerns apply to general flight regimes, and the last two apply to thrust-vectored and high-AOA regimes.

Correlation with closed-looped ground tests is traditionally achieved by modeling actuators with a linear spring

attached to the structure and matched transfer function representations. High-AOA flight is predominantly

performed at low dynamic pressures, so servoelastic dynamics is expected to dominate any unsteady aerodynamic

effects on structural stability. Therefore, for more realistic predictions of actuation and associated coupling

mechanisms, detailed actuator models, which consider the physical, electrical, and mechanical elements of actuation

and its installation on the airframe, are employed to accurately analyze the coupled dynamics of the airframe,

actuators, controller, and aerodynamics.

This report describes the ASE modeling procedure, ground test validation, flight test clearance, and test data

analysis for the F-18 high-AOA research vehicle with thrust-vectoring control system (HARV TVCS). Open- and

closed-loop ground tests were performed to validate the FEM for modal dynamics, tune sensor feedback functions

and actuator models, and compare closed-loop responses between the aircraft and the hybrid analog discrete

servoelastic model without aerodynamics. This report discusses the sensitivity of stability estimates to system

discretization and aerodynamic modeling, compares analysis results with transfer functions derived from flight test

data, and draws conclusions regarding the effectiveness of linear predictions for high-AOA flight.

AIRCRAFT DESCRIPTION, MODIFICATIONS, AND ASE CONCERNS

This section describes the F/A-18 HARV TVCS aircraft, including structural modifications and control system

features, and discusses concerns about modeling uncertainties.

Structural Modifications

The F/A- 18 HARV TVCS aircraft (fig. 1) is a modification of a preproduction twin jet engine fighter F- 18 built

by McDonnell Douglas Aerospace Corporation, (St. Louis, Missouri). The aircraft has clean fixed wings, wingtip

folds for aircraft carder storage, wingtip instrumentation pods augmented with airdata-sensing devices in place of

missile launcher rails, outboard ailerons, inboard trailing-edge flaps, and inboard and outboard leading-edge flaps.

All actuators have redundant hydroelectric servovalves and are dual tandem powered. The leading-edge flap is the

only rotary mechanical system. Twin vertical tails angle outward 20 ° from the vertical, horizontal stabilators are

attached to the aft fuselage, and leading-edge extensions are attached from each wing root junction along the

fuselage to the canopy station.



Figure1.F/A-18HARVTVCSaircraftin flight.
EC910010-6

TheF/A-18HARVTVCSaircraftwasmodifiedattheNationalAeronauticsandSpaceAdministration(NASA)
DrydenFlightResearchCenter(DFRC)toperformflightresearchathighAOAbyusingthrustvectoringandcontrol
lawconceptsforagilityandperformanceenhancementandtoprovidedataforcorrelationwithcomputationalfluid
dynamicssolutions.Modificationsincludetheadditionof Inconel1(primarilyanickelalloy)vanesineachengine
exhaustfor thrustvectoringandcorrespondingballastin theforwardfuselageto maintaina center-of-gravity
location;aresearchflightcontrolsystemfor feedbackcontrolof aerodynamicsurfacesandthevanes;aninertial
navigationsystem(INS)forAOAandsideslipratefeedback;wingtipAOAvanesandpressureprobes(for airdata
researchpurposes);andadditionalinstrumentationfor loads,vanetemperatures,andstructuraldynamics.As a
result,theHARVTVCSaircrafthassignificantlydifferentsystemsandstructuralcharacteristicsfromthebasic
F/A-18aircraft.Becauseof thisreconfigurationASEcharacteristicswereexpectedtochangeconsiderablyfromthe
basicF/A-18aircraft.

TheTVCS structuralmodificationsincludea vectoringsystemwith threeengineexhaustvanesradially
displacedabouteachenginenozzle.Figures2 and3 showthearrangementanddimensionsof thesevanes.During
activation,onlytwoofthethreevanesoneachengineareusedtodirectthethrust,andtheidlevaneisremovedfrom
theexhaustplumebecauseof physicalinterferencewiththevectoredplume.Thehorizontalstabilatorwasmodified
bytrimmingtwopercentof thetrailing-edgeinboardareato provideclearancefortheaftendof theoutboardvane
fairingassembly.

Thevaneassemblyadded1600lb, andthecorrespondingballastin theforwardfuselagejust in frontof the
cockpitamountedto700lb.An additional900lb wasaddedwiththeinstallationof thespinchuteandsubsystem
modifications,whichincludedemergencybatteries,modifiedradome,steelreinforcement,andwiring.Thus,thetotal
weightincreasefromthebasicaircraftis about3200lb.Thisincreaseresultedin anaft center-of-gravityshiftof
4.4in.for theemptyaircraft.Theinternalfuelcapacityis10,620lb,andfull-takeoffgrossweightisabout40,000lb.

llnconel®isaregisteredtrademarkof Huntington Alloy Products Div., International NickelCo., Huntington, West Virginia.
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Flight Control Laws

Basic Flight Control System

McDonnell Douglas Aerospace designed the flight control laws for the basic and modified HARV TVCS F/A-18

aircraft. The F/A-18 basic controller was modified for the TVCS to permit communication with a research flight

control system (RFCS) (ref. 4). The actuator commands from the RFCS are passed to the basic controller for

redundancy checks before commanding actuation. Because the two control laws are computed concurrently, the



choice between the basic and RFCS control laws requires engaging the appropriate surface commands. Figures 4

and 5 display linearized versions of the basic feedback control laws (excluding stick and pedal paths) for

longitudinal and lateral-directional control. In the longitudinal basic control laws, the horizontal stabilators react to

normal acceleration, AOA from airdata vanes mounted on the nose, and pitch-rate feedback. Leading- and trailing-

edge flaps respond to washed-out AOA as essentially trimming devices. Pitch rate is fed back at 80 Hz, but normal

acceleration and AOA feedback are 40-Hz loops. All actuators are commanded at 80 Hz. Important features include

proportional/integral feedforward followed by a 9.6-Hz digital notch filter for the fuselage first-bending mode.

Lateral--directional basic control uses roll rate (80 Hz), yaw rate (40 Hz), and lateral acceleration (40 Hz) to

command differential stabilator, ailerons, leading-edge and trailing-edge flaps, and rudders at 80 Hz. A roll-to-yaw

interconnect directs stabilator and aileron commands to the rudder through lead-lag compensation. Structural digital

notch filters for fuselage and fin first-bending modes are 7 Hz and 17 Hz, respectively.

Research Flight Control System

The RFCS control laws were designed with independent techniques for longitudinal and lateral--directional axes

(ref. 5). Both systems are multirate with INS computation delays over 75 msec for AOA and sideslip rate feedback.

The logic used to convert a thrust-vector command to move the six vanes is a very complicated function of estimated

gross thrust, throttle position, nozzle position, AOA, altitude, and other parameters (ref. 4). This function adds a

12.5-msec delay to the pitch and yaw jet commands.
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Figure 4. F/A-18 longitudinal basic control laws.
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Figure 5. F/A-18 lateral--directional basic control laws with RFCS pass-through yaw-vectored-thrust command.

The INS derives AOA, sideslip angle, and rates from direction cosines, inertial velocity, rate gyros, and body

axis accelerations. These control laws use standard shipset AOA vanes for angles less than 35 ° and INS-computed

AOA at higher angles. Sideslip rate is INS computed at all flight conditions. The flight envelope varies from

15,000 to 35,000 ft altitude for all AOAs and a maximum Mach number of 0.7. Beyond an impact pressure of

150 lb/ft 2, the lateral-directional control laws are the basic control laws with an additional rudder command path to

the yaw jet (fig. 5). RFCS control laws are called pass-through because they pass the rudder command to the yaw jet.

Longitudinal RFCS (fig. 6) commands symmetric stabilators, pitch-vectoring turning vanes, and leading- and

trailing-edge flaps at 80 Hz to control pitch rate (sampled at 80 Hz) and AOA (sampled at 40 Hz). Structural filtering

consists of a digital notch for the fuselage first-bending mode and is assisted by lag filters. At high AOA, the

stabilator is the primary trimming surface. The turning vanes are used if the stabilator becomes ineffective for
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trimming. Proportional, integral, and other compensation is also implemented to get precise AOA control up to 70 °

for research flights and to obtain generally good high-AOA agility and maneuvering.

Lateral--directional RFCS (fig. 7) incorporates the INS sideslip rate (sampled at 40 Hz) as a feedback and

commands all actuators at 80 Hz. The sideslip rate is calculated as

l i(G*cos(O)*sin(t_)+Nyl+psin(tx)-r*cos(tx)I_ = Vco_(_

where V is true velocity, 13 is sideslip angle, O is pitch angle, ¢ is roll angle, tx is AOA, G is gravitational

acceleration, p is roll rate, r is yaw rate, and Ny is lateral acceleration. The notch filters for fuselage first bending
and fin first bending, and the lag filter from the basic control laws remain in the roll control loop. Lateral acceleration

and sideslip rate are notch filtered for wing first bending. At high AOA, these forms of feedback enhance departure

resistance, but at low AOA, only roll-rate feedback is used. Flaps are not employed as dynamic control mechanisms.
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Areas of Concern

Experience with the research X-29 aircraft demonstrates a very good correlation between linear ASE results and

flight test results (ref. 1) at low AOA. Other test results (fig. 8) indicate that discrepancies are clearly evident at higher

AOA. The AOA varies from 10 ° to 45 °, corresponding to a Mach number range of approximately 0.7 to 0.3. The
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Figure 8. X-29 modal damping results at high AOA.
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plots show that the first fuselage and fin bending mode damping trends are well predicted as a function of AOA but
that both first wing-bending mode predictions disagree with flight damping estimates at moderate AOA. The sources

of error were not investigated because predictions were conservative relative to the test results; however, the results

cannot necessarily be generalized to other configurations. Errors may be attributed to vortical flow, buffet loads, flow

separation, noisy data, or modal estimation technique.

Additional uncertainties include vane flutter and the effect of unknown nozzle and plume states on control

system behavior. A novel type of ASE phenomenon exists from the high-temperature unsteady plume that emanates
from the exhaust and the vane assembly attached to the fuselage. Coupling is suspect between the plume

aerodynamics, vane structure, and actuation connecting the vanes to the fuselage. Furthermore, the engine throttle
is not the same at all conditions, and the vane configuration varies dramatically as a function of flight condition and

maneuver. Whether such uncertainties are significant for stability is a matter of concern because only a simplified

analysis was feasible.

Because of this uncertainty and other possible sources of modeling error for the HARV TVCS aircraft, extensive

ground tests were executed for model validation and robust stability was inspected for the basic and RFCS control
laws. Because modeling and analysis procedures are essentially the same for both control laws, the basic analysis is

not discussed in this report except to state that the entire subsonic envelope, up to Mach number 0.9, was cleared

from predictions and flight test. Three test points were chosen as critical flight conditions, and modal frequency and

damping estimates from test data compared favorably with predictions (table 1) for the primary modes of interest.

Table 1. F/A-18 HARV TVCS basic control system stability results for primary modes.

Symmetric modes Antisymmetric modes

Hight
condition First wing First fuselage First wing First fuselage Wing torsion

(Mach/ Frequency, Frequency, Frequency, Frequency, Frequency,

Altitude) g-damping (Hz) g-damping (Hz) g-damping (Hz) g-damping (Hz) g-damping (Hz)

M 0.6/15 kft

Predicted 0.11 5.9 0.029 7.8 0.050 9.1 0.022 7.1 0.036 12.7

Measured 0.08 5.8 0.031 8.1 0.036 8.9 0.019 7.6 0.025 12.6

M 0.7/15 kft

Predicted 0.13 5.9 0.031 7.8 0.054 9.1 0.023 7.1 0.038 12.7

Measured 0.14 6.0 0.040 8.4 0.053 9.8 0.021 7.1 0.019 12.3

M 0.6/10 kft

Predicted 0.15 5.9 0.033 7.8 0.063 9.0 0.023 7.1 0.042 12.7

Measured 0.11 6.2 0.035 8.4 0.043 8.9 0.017 7.6 0.025 12.8

AEROSERVOELASTIC MODELING PROCEDURE

The ASE modeling procedure presented in this section covers the details and integration of aerodynamics as well

as structural and actuator dynamics. Modal analysis and flutter predictions are also tabulated.

Finite-Element Modeling

The quality of a flutter or ASE analysis depends predominantly upon the detail of the FEM. Representing

complicated structures with a large number of elements improves the accuracy but also increases the complexity of
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theFEM.Optimizationof thenumberof nodesandelementsto attainsufficientaccuracymaybecomputationally
prohibitive,soit is vital thatthemodeldesignemphasizescriticalareasbutmaintainsa minimumnumberof
elements.Whenstructuralmodificationsarenecessary,thecriticalareasmayneedtobeadjustedandthemodelmay
requirereexaminationforcompletenessandnumericalaccuracy.

An intensivenormalmodeanalysisusingthe structuredandaeroservoelasticanalysisroutines(STARS)
computercode(ref.6) provedvital for validatingtheFEMmodaldynamicsagainstmeasureddata.TheTVCS
modificationsrequiredsubstantialadditionsto the baselineF/A-18 aircraft. The TVCS comprises fairing

assemblies, bell cranks, vanes, and hydraulic actuators. Beam elements, rigid bars, and quadrilateral plates (fig. 9)

were used to model the modifications, and the entire aircraft model yielded 260 nodes and 340 elements. Free-

vibration structural analyses for the half-aircraft symmetric and antisymmetric boundary conditions were computed

to generate modal frequencies, generalized masses, and mode shapes, which were then used to guide the ground

vibration test (GVT) procedure. Table 2 compares computed modal frequencies with GVT results to show the

excellent correlation for primary symmetric and antisymmetric modes.

Vertical tail ---_ _.,_ r--'rvcs

F sela • L Stabilat°r

960107

Figure 9. F/A-18 HARV TVCS FEM.

Aerodynamic Modeling

Subsonic linear unsteady aerodynamic forces were calculated using the doublet lattice method (ref. 7) for flutter

analysis and ASE models. Aerodynamic paneling is used to compute the unsteady aerodynamic forces for purely

oscillatory motion of each mode for a range of specified reduced-frequency values. These generalized aerodynamic

forces are tabulated complex values which are valid only for undamped oscillatory motion. These values are

extended to the Laplace domain using approximate analytic continuation to represent aerodynamic damping.

Reference 8 outlines some methods to approximate the generalized force coefficients with matrix formulations of

rational functions in s, the Laplace variable. These methods, referred to as Pad6 approximates in the reduced

frequency domain, are estimates of the time lags associated with unsteadiness in the flow. The reduced frequency,
or Strouhal number, which is defined as the ratio of the velocity of vibration to the velocity of the air, is expressed

as (o_/2V, for vibration frequency co, true velocity V, and characteristic length of the half chord _'/2.

Subsequently, a linear time invariant state-space realization can be formulated for each flight condition.
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Table2.FreevibrationanalysisresultsforF/A-18aircraft.

Symmetricmodes.

Primarymotion

Lightweight(2500Ibfuel)

Wingfirstbending(W1B)

Fuselagefirstbending(FIB)

Wingfirsttorsion(W1T)

Stabfirstbending(SIB)

Finfirstbending(Fin1B)

Fuselagesecondbending(F2B)

Wingsecondbending(W2B)

Wingfore-aft(WFA)
Vanerotation

Inboardflaprotation(IFR)

Wingtiptorsion(wq"r)

Heavyweight(full fuel)

Wingfirstbending(W1B)

Fuselagefirstbending(FIB)

Wingfirsttorsion(WIT)

Stabfirstbending(S1B)

Finfirstbending(Fin1B)

Fuselagesecondbending(F2B)

Wingsecondbending(W2B)

Wingfore-aft(WFA)
Vanerotation

Inboardflaprotation(IFR)

Wingtiptorsion(WTT)

Predicted GVT
(frequency,Hz) (frequency,Hz)

5.83 6.08

7.97 8.19

11.71 11.78

13.77 13.78

15.92 15.72

16.39 16.20

18.05 ---

18.86 ---

22.1 20.1

23.70 ---

27.52 ---

5.75 6.02

7.45 7.76

11.64 11.80

13.68 13.63

15.92 15.68

15.34 15.23

17.05 17.01

18.19 ---

22.1 20.1

23.50 ---

27.47 ---

Antisymmetricmodes.

Lightweight(2500lb fuel)

Fuselagefirstbending(FIB)

Wingfirstbending(W1B)

Wingfirsttorsion(WIT)

Stabfirstbending(S1B)

Wingfore-aft(WFA)

7.40 7.25

8.88 8.48

12.03 12.20

13.69 13.58

15.36 15.25
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Table2.Concluded.

Antisymmetricmodes.

Primarymotion
Predicted

(frequency,Hz)

Lightweight(2500lb fuel)

Finfirstbending(Fin1B) 15.85

Fuselagefirsttorsion(FIT) 19.50

Fuselagesecondbending(F2B) 21.83
Vanerotation 22.1

Inboardflaprotation(IFR) 23.33

Fore-fuselagetorsion(F'Vr) 24.36

Heavyweight(full fuel)

Fuselagefirstbending(FIB) 6.86

Wingfirstbending(W1B) 8.61

Wingfirsttorsion(WIT) 12.02

Stabfirstbending(S1B) 13.57

Wingfore-aft(WFA) 14.99

Finfirstbending(Fin1B) 15.56

Fuselagefirsttorsion(FIT) 18.76

Fuselagesecondbending(F2B) 21.01
Vanerotation 22.1

Inboardflaprotation(IFR) 23.02

Fore-fuselagetorsion(FIT) 23.98

GVT
(frequency,Hz)

20.1

6.64

8.33

12.13

13.45

15.09

15.31

22.00

20.1

Justificationfor theapplicationof forced-oscillationlineartheoryisbasedonthefollowingassumptionsfrom
references9and10:

• Thestructuralvibrationsabouta fixed-meanAOA arerelativelysmall,so therelationbetweensystem
displacementsandmotion-dependentstructuralandaerodynamicforcesis linear.

• Small-amplitudeoscillatorymotionhaslittleinfluenceontheunsteadypressuresresultingfromflowseparation.

Inaddition,for fully separatedflowabove30° AOA, it is assumed that:

• Aerodynamic forces due to modal vibration do not change appreciably as a function of AOA because the
pressures remain essentially constant chordwise for a fixed-mean AOA.

• At low dynamic pressure where sustained high-AOA flight is commonly performed, unsteady airloads due to

modal vibration are small and can be reasonably estimated with potential theory.

In this study, the method of least squares detailed in reference 1 was used to approximate a Pad6 partial fraction
approximation to the unsteady aerodynamic forces as a function of reduced frequency. The number of partial
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fractionsusedtofit thedoublet-latticedatais theorderofthefit.Pad6fitsto thedoublet-latticeaerodynamicswere
designatedasfourthorderfor fluttercalculationsandzeroorderforlaterASEanalyses.Fromacomputationalpoint
of view,low-orderASEmodelsarepreferredbecausetheyreducethecostof stabilityanalyses.Severalstability
analysesmustbeperformedateachflight condition,andthecomputationalcostincreasesdramaticallywith the
orderofthesystem.Becausetheactuatormodelsaddaconsiderablenumberof states,thelowestorderaerodynamic
modelwithadequateaccuracyisdesired.First,steadyaerodynamicdatafromalinearizedversionofthefull-aircraft
simulationdatabasewereincorporatedinto thegeneralizedaerodynamicstiffnessanddampingmatrices(ref.1),
therebyimposingtheconstraintthattheaerodynamicforcesnearzero-reducedfrequencymatchthewind-tunnel
basedmeasureddata.Then,thelow-ordermodelsimplyrepresentedtheunsteadyaerodynamicsasaresidualstatic
correctiontothesteadyaerodynamicdata,andnoaerodynamicstateswereadded.Alternatively,ahigh-ordermodel
canadduptofourstatesfor eachmode(ref.8),whichmakestheanalysiscomputationallyveryexpensive.

Becauseofthecomplexityof schedulingindividualvanedisplacementstoachieveacommandedvectoredthrust
direction,thevaneswerecombinedtoderiveavectoredthrustcontrolmodewithrespectto aspecifiedthrustlevel.
Vectoredthrustforceeffectivenesswasreducedtothesteadycomponentoftheplumedynamicsactingonthevane
configurationthat wasusedto derivethe modeshape.The orientationof eachvanedeterminedthe force
transmissiontotheaircraftthroughtheattachmentstructure.Theseforceeffectivenessdatawereobtainedfromtests
asdescribedin reference11.Unsteadyplumeeffectsonthevaneswerenotmodeled.

Theassumptionis thatontheaverage,all vaneshavethesameloadingasafunctionofflightcondition.Because
thecontrolsystemattemptstoidleonevaneineachplumeatall timesto avoidinteractionwith thedesiredthrust
vector,thisassumptionisconsideredreasonablebecause,atanyflightcondition,eachvanewill travelbetweenlimits
of idleandadeflectionnecessaryto achieveavectoredthrustdirection.Whileonevaneineachplumeis idling,the
othertwomustcompensatetomaintainacommandedthrust-vectorangle.Thereisnoreasonto expectthatanyone
vaneisadominantload-carryingmemberwhencomparedtotheothersinasteady-statemaneuver.

Forcurrentandfutureconfigurationsusingmultiaxisthrustvectoringwithmovingnozzles,themodelingissues
areverysimilartoanexternalvaneconfigurationexceptthatthevanesof thenozzleareinternallyattachedto the
structurethroughtheactuationmechanism.Forinstance,couplingwill beof adifferentnature,but loadingonthe
nozzleswill still be somewhatconcentricwith approximatelythe samebandwidthastheTVCS.The major
distinctionwill be the detailsof the attachmentstructurefrom the vaneactuationto the fuselage.External
aerodynamicson the nozzlescanbe ignored,andthe plumewill beevenmoreconstrainedin the internal
arrangementsothatmodelinguncertaintiescausedbyplumedynamicsareexpectedto belesssignificant.Because
this formallymakeslittle difference,theanalysisof theexternalvaneconfigurationcanbegeneralizedto any
productionthrust-vectoring mechanism.

Table 3 compares flutter speeds for the HARV TVCS aircraft from the aeroelastic state A-matrix (ref. 1) to those
for the basic F/A-18 aircraft solutions. A sea-level condition at Mach 0.9 where g = 0.02 structural damping is used

for the flutter results because the flight envelope is limited to subsonic. The ASE A-matrix contains all augmented

Table 3. F/A-18 flutter results.

Symmetric Antisymmetric

Velocity, Frequency, Velocity, Frequency,

Aircraft KEAS Hz KEAS Hz

Light weight (2500 lb fuel):

Basic F/A-18 759.9 7.39 857.1 10.08

HARV TVCS 739.1 8.08 783.7 9.51

Heavy weight (full fuel):

Basic F/A- 18 770.8 7.30 871.3 9.93

HARV TVCS 701.4 7.73 765.8 9.35

15



aerostructuraldynamics.Themodeswiththelowestflutterspeedsareshowntobesymmetricfuselagefirstbending
atabout8 Hzandantisymmetricfirstwingbendingatabout10Hz.Thelowestcomputedflutterspeed,701.4kn
equivalentairspeed(KEAS)for thesymmetricmode,correspondsto Machnumber1.06at sealevelandMach
number1.4atanaltitudeof 15,000ft. ModificationsfromthebasicF/A-18aircraftto theHARVTVCSaircraft
resultedin decreasedflutterspeedsthatwerestill welloutsidethedesiredflightenvelope.

Actuator Modeling

The validity of an ASE model depends on not only the dynamic modeling of its components but also the
coupling between these components. The airframe, aerodynamics, actuation, and the control system must be
modeled accurately over a desirable and consistent frequency range. Actuator responses are customarily represented
with transfer functions matched to test results, and control-surface stiffness with respect to the airframe is often

modeled as a linear spring in the formulation of the airframe dynamics (ref. 12). More realistic predictions of
airframe and actuation coupling that are consistent with advances in airframe and control-system modeling can be

achieved by considering the physical properties of the system and its installation on the airframe. Detailed models,
based on electrical, hydraulic, and mechanical characteristics with complex impedance effects, are required for more
accuracy. Furthermore, at high-AOA and low-dynamic-pressure flight conditions, it is expected that unsteady

aerodynamic forces will be less significant and hinge moments will be prominent (ref. 13).

The model described in Appendix A and represented in figure 10 is tuned to match measured results for each
actuator. Discounting the states caused by structural and control-surface inertias, which are augmented as described

Attachment

structure

(backup)
Main ram assembly I (lever arm)

XI
Piston displacement

relative to body, I Surface

I Xp'X'-Xs Externll I_l)" XO

_P-X. f°rce _ll_ Fe

(a) Installation.

Aerodynamic

load

060373

Xi

T I time constants

Servo valve Main ram

X_ Hydraulic end _ X o

mechanical l

dynamics _ Xp

I.--..--., Valve feedback

Control system

i_)_s 4 Ram piston feedback '

(b) Control system.

gCa0120

Figure 10. Sample actuator installation and control system.
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in thenextsection,thehigh-orderactuatormodels(table4)for theF/A-18HARVTVCSbecomeseventhorderfor
theaileronandvanes,tenthorderforthestabilator,sixthorderfortherudder,seventhorderfor theleading-edgeflap,
andeighthorderfor thetrailing-edgeflap,therebyadding45statesforeachsymmetricsetandantisymmetricsetof
structuralmodes•Thedifferencesin thenumberof statesbetweenactuatorsarepredominantlydeterminedbythe
typeof servovalveandtheinnerloopservovalvefeedbackmechanism.

Table4.High-orderactuatormodeldata.

Controlsurface Transferfunction

Trailing-edgeflaps _15×10'4) is+284)/_+808)(s + 15.4)(s + 76.2)(s + 469)(s + 1033)[sZ + 2(0.98)(304)s + 30421[ s z + 2(0.011 )(817)s + 81721

Ailerons

Stabilators

Rudders

Vanes

(2.0x1016) ,
(s + 356)

Is" + 2(0.62)(69A)s + 69.12][s 2 + 2(0.94)(392)s + 39221[s 2 + 2(0.82)(746)s + 7462](s + 17326)

(s + 284)(s + 808)[s 2 + 2(007)(72)s + 722]
(30×1014) 2 ' _ , 2

(s + 384)(s + 1098)[s 2 + 2(0.6)(30)s + 30 ]Is" + 2(0.8)(127)s + 127"1[s 2 + 2(0.9)(335)s + 3352][: + 2(0.02)(718)s + 718 ]

(s + 357)

(2"6x1013)(s + 14 4)(s + 224)(s + 431 )(s + 607)[s2 + 2(0.006)(3335)s + 333521

(1.6×1015) (s + 356)
(s + 725)1s 2 + 2(0.79)(75)s + 7521[s 2 + 2(0.79)(475)s + 4752][s 2+ 2(0.82)(781)s+ 7812]

State-Space Formulation

A detailed exposition of the procedure to augment the structural dynamics, aerodynamics, and sensor dynamics

for an ASE analysis is given in reference 1. The structural model includes rigid-body, flexible, and control-surface

modal dynamics as well as cross inertias. Steady aerodynamic forces from a linear panel method are replaced with

those based on wind tunnel or other measured data before approximating the generalized aerodynamic forces for

state-space representation• If stiffness effects from the control-surface rotation modes are computed from the FEM,

representing the stiffness of the control surface against its actuator unit and supporting structure, they are discarded

because they are replaced by the more accurate actuator model (fig. 10). In essence, the state equations take the

following form for rigid-body states rlr, flexible-mode states tie, control-surface displacements _i, and control-
surface rates _i

_'_r

Tie

Mr

_e

Ia'I
_r

1
llr

tie

= [c]

"l_r

• +[DD ]
lqr

rle
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Actuator states are augmented by adjusting this matrix quadruple as

_r 0 llr + (_)

The equation for control-surface rate 8 derived above (without the structural mode states x I and "_1 since they are

already included in tie and Tie with the appropriate stiffness, damping, and inertial coupling terms) is augmented
to this model for each actuator to produce

= _x + _5 d

y = Cx + D_5d

where x = [rla fir tie fir l_le 5] includes all actuator states fla. This aircraft plant description is augmented with
control-system dynamics to construct the entire aircraft model.

AEROSERVOELASTIC ANALYSIS AND GROUND TEST RESULTS

Open-Loop Analysis and Ground Test

Low-order actuator models conventionally used for ASE analysis are typically second to fourth order, with a

corresponding frequency used to define the dynamic stiffness between the airframe and control surface. These

models are generated by simply fitting a low-order equivalent transfer function to measured data, with no regard for

actuator details. Compliance with the structure is provided by the stiffness frequency, defined as co = kr_,

which is derived from a measured dynamic stiffness k T and surface mass m 0. The transfer functions and stiff-

ness frequencies used to generate the low-order actuator models in the current study are listed in table 5. (The

Table 5. Low-order actuator model data.

Control surface Transfer function Stiffness frequency, Hz

352 4
Trailing-edge flaps s2+ 2(0.71)(35)s + 352

Ailerons 752 16
s2 + 2(0.59)(75)s + 752

Stabilators 3°s_ 2.4
s2 + 2(0.51 )(30.8)s + 30.82

Rudders 722 44
s2 + 2(0.69)(72)s + 722

Vanes 752 8
s"_+ 2(059)(75)s + 752
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leading-edgeflapis notshownbecauseof its relative insignificance in control authority.) Comparison plots and
measured test results between the analytical high- and low-order models, are shown in figure I I for the aileron

actuator. This model is also representative of the other actuators. The low-order model was developed by matching

a transfer function to the test data, and the high-order model was tuned to the data.

Magnitude,
dB

5

0 m

--5 --

-10

HOM
LOM
Test data

I I I I I I I I I I

- 5O

Phase,
deg -100

-150

- 200
0

p

I I I I I I I I I --1
2 4 6 8 10 12 14 16 18 20

Frequency, Hz 960108

Figure 11. Frequency response of aileron high-order actuator model (HOM) and low-order actuator model (LOM)

compared with test data.

GVTs provided sensor location dynamics from each mode relative to a shaker input or some other reference
location. A reference location (input) was chosen on the aircraft for each vibrated mode, and the response (output)

at the locations of the feedback sensors was measured to provide a relation for each mode between input at the

reference and output at the sensor location. Normal acceleration, lateral acceleration, and pitch, roll, and yaw rate

feedback were measured. These data were then incorporated into the analysis, assuming that the analytical mode

shapes were correct to within a scale factor (i.e., the sensor location movement relative to the reference input could

simply be multiplied by a constant factor).

Open-loop tests provide a better definition of control-system feedback than an interpolated FEM will produce.

Figure 12 (heavy-weight aircraft) and figure 13 (lightweight aircraft) compare open-loop responses from stabilator
to feedback locations for FEM-derived interpolated sensor motions and those corrected with measured GVT data.

Clearly, the differences can be serious enough to require that the measured responses be used in the analyses.

Modal dynamics at the sensor locations are input to the usual linear sensor models used for control-system

analysis. RFCS control laws resort to shipset AOAs for angles less than 35 ° and INS AOAs at higher angles. The

INS sideslip rate is fed back throughout the envelope. However, AOA and INS feedback are not realizable from a

ground test. Sideslip rate and AOA, therefore, are approximated by the dynamics of their respective generalized

rigid-body modes (ref. 14) at the center of mass in the body-fixed reference axes. This is the inertial position of the

origin of the body axes, or the instantaneous center of mass of the aircraft.
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Figure 12. Comparison between FEM-interpolated and GVT-derived heavy-weight aircraft open-loop responses
from horizontal stabilator to selected feedback locations.
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Figure 13. Comparison between FEM-interpolated and GVT-derived lightweight aircraft open-loop responses from
horizontal stabilator to selected feedback locations.
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Closed-Loop Modeling, Ground Test, and Analysis Results

Controls Augmentation

Modeling the dynamics of controller analog elements is well understood and proceeds in the usual manner for
ASE modeling. Modeling the frequency content of continuous signals with linear analog elements is as precise as
the premise of linearity and presents no difficulty when augmenting the control-system dynamics with the plant
quadruple. The resulting augmented system is a linear description of the coupled interaction between controller and

plant, which is as accurate as the assumptions that went into the modeling process. Modern controllers, however, are
discrete implementations and often structured in multirate form because of limitations in sensors, control law
processor capabilities, or signal bandwidth issues. Furthermore, most standard techniques for approximating
continuous transfer functions with digital implementations fail to properly characterize the continuous response,

even up to the Nyquist frequency. For example, the F/A-18 RFCS longitudinal control system (fig. 6) has an 80-Hz
pitch-rate feedback loop combined with 40-Hz AOA, and the lateral-directional control laws combine roll rate at
80 Hz with a 40-Hz yaw rate, lateral acceleration, and sideslip rate. For the ASE analysis, in which modal
frequencies are near and significantly above the Nyquist frequency, multirate discretization becomes an important
consideration because of aliasing effects. Hence, particular attention is given to these topics for the F/A-I 8 HARV

TVCS analyses (Appendix B). Figure 14 shows the multirate system realization.
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Figure 14. Multirate combined system realizations.
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Closed-Loop Ground Test

When the modeling process was completed, ground tests were constructed to compare closed-loop combined

system behavior with analyses. Closed-looped tests are critical for examining dynamic coupling before aerodynamic

augmentation. A flight condition of Mach number 0.2, at an altitude of 30,000 ft, with a 40 ° AOA (to compute control

law gains) was chosen for the basic control law combined system ground test because it is a relatively high-gain

condition at high AOA. Closed-loop responses were derived by individually summing sinusoidal sweeps up to 20 Hz
into each command loop. Figure 15 compares closed-loop responses between the predicted and test data for input

signals injected into the aileron loop for the heavy-weight aircraft. Based on such correlations, the analysis model

was used to predict ASE characteristics for basic control laws and RFCS.

Analysis Results

A gain stabilization criteria of 6-dB peak clearance at and above the frequency of the first structural mode, with

no phase margin requirement, has been an accepted design goal for classical loop gain robust stability (refs. 2
and 15) when flexibility is considered in the presence of unmodeled uncertainty. However, the multivariable stability

margin, It, (ref. 16), which accounts for structured or unstructured model uncertainty in all loops at each frequency,
is a more indicative measure of robust stability. The multivariable margin is able to check stability levels at various

locations in the feedback structure (usually at the plant inputs, sensor outputs, and regulated variable error points)

to determine if the control laws result in a stable closed-loop system for all reasonable true systems, given the

nominal model and uncertainty bounds. These uncertainty bounds can be reliably estimated (refs. 17 and 18) based

on previous experiences and particular model fidelity. Therefore, besides the common single-loop-at-a-time gain
stabilization checks on robust ASE stability, multivariable loop gain rolloff criteria were also addressed. In general,

open-loop eigenvalues, closed-loop roots, loop gains, and multivariable margins should be routine calculations

necessary for stability analysis.

Figure 16 shows sample equivalent open-loop responses for longitudinal, lateral, and directional loops for both
controllers at the test condition. The plots on the left side of this figure show responses for heavy weight aircraft.

The responses for lightweight aircraft are shown in the plots on the right side. Differences between basic and RFCS

configurations are most significant in the lateral plot. RFCS lateral loop gains seem to be a potential problem at this
high-gain condition. The analysis, including the aerodynamics, was performed at a dense array of flight conditions

to study the RFCS ASE properties in all axes.

The multivariable complement of the classical gain and phase margin criteria used for single-loop-at-a-time

analysis is the multivariable margin, commonly referred to as _t. This measure captures the performance and

stability aspects of feedback reliably and nonconservatively for multiple loops simultaneously in the presence of
uncertainties. Furthermore, the multivariable margin encompasses the realistic situation of uncertainty that occurs

anywhere in the loops in a structured manner, not just arbitrarily. The ability to treat simultaneous structured
uncertainties also offers the ability to deal with performance and robustness concurrently. Although stability and

performance evaluations with perturbations dealt with individually can have good results, I.t analysis gives

necessary and sufficient conditions for stability in the face of multiple, simultaneous, and bounded perturbations of

fixed but arbitrary structure.

In practice, conditions imposed on nominal feedback loop shapes depend on where and how the generally

complex perturbation, A, enters the system. Multiplicative perturbations on the open-loop plant G, described by

0 = (I + A)G at the output, or 0 = G(I + A) at the input, represent uncertainty characterized by sensor and

actuator errors, or neglected high-frequency dynamics. These perturbations impose constraints on the

complementary sensitivity functions. Alternatively, output (G = (I+A)-IG) and input (G = G(I+A) -1 )

sensitivity representations characterize low-frequency plant parameter errors. The type of uncertainty description

imposes a condition on the nominal feedback loops for robustness and performance. The plant parameter errors, in
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turn, impose constraints on the sensitivity functions. In an experimental setup, external signals can be used to derive

the necessary multivariable transfer functions that reveal how uncertainty enters the system as compared to
the nominal analysis model, and expose system anomalies as well as potential stability and performance

problems. This setup was used for ASE stability monitoring in this study. In addition, all robust stability tests are
for complex diagonal perturbations at desired loop points, because these perturbations are physically motivated
and nonconservative.

Figure 17 shows structured singular values of the complementary sensitivity at input (actuator) commands and

output (sensor feedback) points for a sample lateral--directional case at 45-1b/ft 2 dynamic pressure and 70 ° AOA.
The behavior depends on where the uncertainty enters. These plots can be interpreted much like loop gains in a

single-loop system, but here the lateral and directional loops are examined simultaneously. In addition, the -6-dB

gain stabilization criterion is assumed to be the robust stability guideline for multiloop analysis as well. Hence, at
the first antisymmetric wing-bending mode frequency of 9 Hz and the wing torsion frequency of approximately

12.5 Hz, peak values near 1 (0 dB) indicate poor stability robustness.

Figure 18 shows equivalent open-loop responses taken from the longitudinal, lateral, and directional loops at the
same condition. For describing the aerodynamics of the F/A-18 HARV TVCS in state-space form, the Pad6 fits to
the doublet-lattice aerodynamics were designated zero order to simplify the aerodynamics. The objective was to

incorporate the higher order actuator models and still maintain a reasonable order model. The justification is based

on the premise that at higher AOA and low dynamic pressure, the modal dynamics are predominantly servoelastic,
so more emphasis is invested in the well-defined actuation characteristics. The plots in figure 18 show that the simple

zero order Pad6 fits for the unsteady aerodynamics give responses nearly identical to those using second-order fits,
thereby substantiating the presumption that the order of the Pad6 fits can be reduced at typical high-AOA conditions.

In the lateral response, the modal gain peaks for the same two antisymmetric wing modes that exhibited poor
robustness levels are near 0 dB and the accepted gain stabilization criteria of -6 dB is exceeded. These individual

loop gains yield optimistic stability margins compared to the multiloop margins shown in figure 17.

Other flight conditions revealed even lower stability levels, but in all cases analyzed inside the flight envelope,

the corresponding closed-loop dampings at these modal frequencies never predicted an actual instability. An
eigenvalue analysis did not disclose any potential instabilities, but the hybrid frequency results obviously showed a

potential problem for the two antisymmetric modes at high-AOA and low-dynamic-pressure conditions in RFCS.
The origins of the possible hazard were investigated and found to be mainly from the lateral acceleration feedback.

Instead of expending time to devise, implement, and test notch filter adjustments or additions to lower the loop gain
at these modal frequencies, (with possible sacrifices in rigid-body stability and/or handling qualities), a flight plan

was devised to cautiously expand the flight envelope to verify safety of flight.

FLIGHT TEST TECHNIQUE

Excitation and Instrumentation

One concern for safe envelope expansion at high AOA is the requirement for an adequate signal-to-noise ratio
to discern modal response from a noisy environment. Buffet pressures exhibit wide-band frequency response

characteristics with preferential frequency bands, depending on AOA. The frequency range of the dominant pressure

response for a particular AOA determines which modes receive the greatest excitation. References 19 through 21
outline some buffet characteristics for an F/A-18 aircraft. Buffet excitation is greatest between 20 ° and 50 ° AOA,

which may have adverse effects for stability estimation because it is an unmodeled external input. Such

considerations led to the design of an onboard excitation system (OBES). This system was implemented by
summing signals to actuator commands for structural excitation (figs. 5, 6 and 7).

Frequency sweeps were generated to command a particular control surface to induce sufficient inertial
and aerodynamic loading to the aircraft. Sweeps from 5 Hz to 20 Hz were added to the stabilator, aileron, rudder,

pitch vane, and yaw vane commands to encompass the modal dynamics of the first-bending and torsion modes
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Figure 17. Predicted lateral-directional complementary sensitivity structured singular values at input and output for

high AOA of 70 ° and dynamic pressure of 45 ib/ft 2.
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ineachaxis.Althoughaerodynamicsurfacesaregoodsourcesof excitationforlowAOA,athigherAOAthe vanes

provided inputs to supplement the ailerons because the rudders became relatively ineffective and the stabilators

were saturated.

Instrumentation consisted of accelerometers mounted on the wing tips, horizontal stabilators, vertical

stabilators, ailerons, and fuselage. Feedback measurements to the control system and angular accelerometers

mounted in the fuselage were used to analyze the flight data for ASE properties. ASE clearance was achieved by

concentrating on fuselage sensors because the feedback signals were measured here, and the linear and angular
acceleration measurements tended to give higher quality data for modal response than rate gyros.

AOA Envelope Clearance

A flight plan was devised based on the analysis to establish a dynamic pressure and corresponding AOA trend

in damping estimates. That is, for each dynamic pressure down to 60 lb/ft 2 there was a related AOA for level trimmed

flight, regardless of altitude, so that trends in dynamic pressure were correlated with trends in AOA. Effects of

density variation were insignificant. For lower dynamic pressures and AOA greater than 20 °, a constant AOA was
maintained for each series of sweeps while sacrificing altitude. Figure 19 shows AOA clearance, which started at

170 lb/ft 2 dynamic pressure, 5° AOA, at three different altitudes, then moved to 100 lb/ft 2 dynamic pressure,

10 ° AOA, followed by 60 lb/ft 2, 20 ° AOA, until it reached 30--45 lb/ft 2, 30 ° AOA. Subsequent AOA clearance

required testing 10 ° increments up to 70 ° AOA. At the initial Iow-AOA test points, all the surfaces were excited to
refine the choice of excitation mechanisms and amplitudes until a small subset was chosen for high-AOA clearance.
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Figure 19. F/A-18 HARV TVCS aeroservoelastic clearance conditions for high AOA.

Upon engaging the OBES during the first envelope clearance flight, yaw and roll coupling during the yaw vane

commanded sweeps appeared to such a degree that the pilot aborted the sweep just before 20 Hz. The tail end of the

sweep (fig. 20) exposed the interaction as the rudder and yaw vector commands responded to yaw rate and lateral

acceleration when the sweep varied from 17 Hz to 20 Hz. Frequency content decreased linearly from 3 Hz until
OBES termination. The concern was that the low-frequency oscillations were diverging and the pilot would lose

controllability of the aircraft. This phenomenon is a result of the discretely excited system containing spectral
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Figure 20. Selected time responses during first commanded yaw-vectored-thrust excitation in flight.

30



componentsin thecontinuousoutputforceattheinputfrequencyandall of itsaliases.Thealiasisat thedriving

frequency plus the Nyquist frequency. Even though the sweep was run up to only 20 Hz, the first alias of the

forcing function was found up to 40 Hz. Furthermore, from this alias, the digital system sensed a component
folded down about the Nyquist frequency of 20 Hz and produced a signal of significant power from 3 Hz to 1 Hz.

The 40-Hz lateral acceleration and yaw-rate feedback in RFCS lateral-directional control loops responded to

the substantially modulated spectral components of the input, resulting in rigid-body coupling. Coupling

and vibration levels were excessive enough that amplitudes were decreased for both pitch- and yaw-vectored-

thrust commands.

In the following synopsis of feedback properties as functions of AOA, lateral acceleration is regarded as the

most critical feedback because it is primarily responsible for poor predicted stability robustness and demonstrates

the most sensitivity to changing conditions. Other feedback responses, displayed for informational purposes, are

relatively less meaningful in this context.

Aileron sweeps have the most promising antisymmetric excitation effectiveness of the aerodynamic surfaces

from the responses at 20° AOA (fig. 21). The trend of lateral acceleration feedback responses as a function

of AOA (fig. 22) reveals that modal definition is improved as AOA is increased from 30 ° to 50 °. Furthermore,

figure 23 (pitch vane inputs), figure 24 (yaw vane inputs), and figure 25 (ailerons), show no significant adverse

trends in any of the feedback signals as a function of AOA. An additional application of the OBES is the

generation of transfer functions. Figures 26 and 27 show transfer functions of normal acceleration from pitch vane
command and lateral acceleration from yaw vane command. These comparisons support the validity of the model;

more appropriately, with a modem behavioral approach to systems, the model is not falsified by the data.
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Figure 21. Comparison of lateral acceleration responses from stabilator, aileron and rudder input excitation at 20 ° AOA.
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thrust excitation.
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STABILITY RESULTS

Frequency and Damping

The following multiple-degrees-of-freedom (MDOF) procedure (ref. 22) was used to extract frequency and

damping estimates from flight data:

(1) Transform time data (with ensembling, windowing, etc.) to get the magnitude of the signal in the

frequency domain.

(2) Generate the phase using the complex cepstrum (inverse transform of the logarithm of the transform).

(3) Choose a frequency range for modal estimation.

(4) Choose an order for the transfer function to fit this frequency range.

(5) Fit a stable minimum phase transfer function to the magnitude data using linear programming.

Various measurements can be assembled before the procedure is applied. Modal frequency and damping result from

the estimated transfer function roots. An example of the application of this procedure is shown in figure 28 where

magnitude data between 6 Hz and 16 Hz are fit with twelfth- and fourteenth-order transfer functions. The method

successfully discriminates closely spaced modes, and damping estimates tend to have small standard deviation.
Numerous estimates were computed at each flight condition to determine frequency and damping.
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Figure 28. Sample fits using MDOF modal estimation procedure.

Figure 29 shows predicted and estimated modal frequencies as a function of AOA. Predictions are average

values of a lightweight and heavy-weight configuration. Frequencies are in excellent agreement; the only noticeable

differences are symmetric wing torsion (predicted approximately 0.5 Hz high) and antisymmetric vertical fin

(predicted approximately 0.5 Hz low). Figure 30 shows predicted and estimated damping estimates for the modes

of interest. The predictions agree reasonably well with the values estimated from flight data, and damping is more
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thanadequatefor all themodes.Furthermore,thedamping values show no significant adverse trends as a function

of AOA (or dynamic pressure) within the RFCS flight envelope. An interesting similarity with the X-29 results

(fig. 8) is that the predictions are generally conservative for both aircraft, yet any other resemblance in trends with

AOA is not evident.

Transfer Functions and Multivariable Stability

Open Loop

Model validation includes the comparison of predicted and flight-derived open-loop responses from surface

commands to feedback sensors. Open-loop response correlations between predictions and flight data vary

significantly depending on feedback, surface command, and flight condition. Figure 31 shows open-loop responses

from differential stabilator, aileron, rudder, and yaw vectored-thrust commands to lateral acceleration feedback at

5° AOA. Lateral acceleration is overpredicted from differential stabilator and yaw-vectored-thrust commands, and

underpredicted from the rudder command. The aileron comparison is a relatively good match, but even with OBES

excitation at tow AOA, the data quality is not exceptional. At another flight condition, these comparisons could look

much different. Since stability is the primary concern, this difference in data quality can be alleviated by

concentrating on the multivariable aspect of the system.

Figure 32 shows the physical uncertainty of the plant G without feedback. The unstructured perturbation

block A represents a complex variation in the plant, so the perturbed plant G = (I+ GA)-IG is a measure of

output errors caused by input commands and disturbances. A computation of the structured singular value p.a(G)

produces the minimum perturbation A that causes instability of G, the open-loop aircraft (ref. 23). A comparison of

the minimum flight-derived A with the minimum predicted A that causes feedback loop instability produces a

multivariable assessment of the relative instability of the open-loop airplane and model. The minimum A is simply

the norm of the A that causes instability, or the stability margin for the type and location of an uncertainty. A smaller

value for the stability margin indicates less robust stability. This feedback interpretation of the structured singular

value _tA(G ) is useful for investigating the important multivariable aspects of stability.

Figure 33 shows longitudinal open-loop unstructured minimum A's for various AOA as comparisons between

flight-derived and predicted computations. Matches between 5 Hz and 20 Hz validate the longitudinal stability

predictions, which adds a degree of confidence to the damping results. An unexpected decrease in robust stability is

distinct between 9 Hz and 10 Hz at 60 ° AOA; this decrease is attributed to the pitch-rate gyro sensing significant

motion from antisymmetric wing bending.

Because only aileron and yaw-vectored-thrust OBES commands were lateral-directional inputs for 30 ° AOA

and above, these commands and all feedbacks were used to compute the minimum A. Lateral-directional open-loop

unstructured minimum A's are displayed in figure 34. Similarly to the longitudinal cases, the predictions seem

insensitive to AOA, but the flight results vary. Fin bending and wing fore-aft near 15 Hz occur most conspicuously

at the 30 ° and 40 ° conditions where buffet is prevalent. A noticeable change in antisymmetric wing first-bending

frequency occurs near 9 Hz between 50 ° and 60 ° AOA. At these frequencies, the flight data tend to be less robust

than the model between 30 ° and 50 ° AOA. This phenomenon may result from buffet loads because at 60 ° AOA

(outside the buffet region) the correlation of robust stability estimates clearly improves. Because the frequency shift

at 9 Hz also occurred in the open-loop longitudinal plots at 60 ° AOA (fig. 33) this shift is likely caused by

significantly different wing airloads when going from 50 ° to 60 ° AOA. This frequency shift can also be seen in the

estimated frequency plots (fig. 29).
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Figure 32. Open-loop uncertainty description of output errors due to input commands and disturbances.
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Closed Loop

Above 20 ° AOA, the OBES input was measured to enable the generation of closed-loop results. Figure 35 shows

one uncertainty description where responses are taken from surface commands to feedback with the feedback loop

closed by controller K. As in the open-loop case, the perturbed plant G = (I + GA) -I G is a measure of output

errors caused by input commands and disturbances. In this case, however, a different structured singular

value p.a[(/- GK)-IG] is used to compute the unstructured A. Figure 36 shows that differences between flight-
derived and predicted perturbations to instability support the open-loop results, as would be expected if the

controller dynamics were modeled properly.

Figure 37 shows a second closed-loop uncertainty interpretation to describe input sensitivity caused by input
commands. The plant perturbation is represented by G = G(I + A) -1, and pA[(1- KG) -1 ] is the multivariable

stability margin used to compute A. In this case, however, the A is diagonal, or structured, because uncertainties in

any input generally do not couple with another input. Figure 38 shows lateral-directional closed-loop minimum

A plots for aileron and yaw-vectored-thrust OBES input and respective actuator command output taken after the

OBES signal is summed to the actuator command signal. This multivariable stability margin result clearly indicates

that, in the excited frequency range, the model again demonstrates slightly more stability robustness than the aircraft.

In addition, the model and aircraft seem to agree best at the 60 ° AOA condition. Otherwise, discerning any specific

dissimilarities is difficult because no distinguishing features exist in the data.

Finally, a third closed-loop uncertainty interpretation describes input response caused by input commands,

or input complementary sensitivity (fig. 39). The perturbed plant is modeled as G = G(I+A), and

BA[KG(I-KG) -1] is the multivariable stability margin used to compute the structured A. Figure 40 shows

lateral-directional closed-loop minimum A plots for the same OBES input used in figure 38, but here the output is

the respective actuator commands taken before the OBES signal is summed to the actuator command signal. Beyond

15 Hz, the variance between model and aircraft is exaggerated when compared to the closed-loop plots (fig. 36), and

the 60 ° AOA match is again clearly the best. Differences in complementary sensitivity are an indication of input

errors at high frequencies, possibly because of nonlinear actuator dynamics or unmodeled high-frequency

aeroelastic dynamics.

In summary, for the open-loop and two closed-loop uncertainty structures analyzed with the OBES input, the

flight data and model correlate better at low AOA and very high AOA than at moderately high AOA. In other

words, the region of greatest buffet activity corresponds to the largest differences between predicted and measured

robust stability.

External Plant

Input _11 G_ output

T
v

960153

Figure 35. Closed-loop uncertainty description of output errors caused by input commands and disturbances.
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Figure 36. Predicted and flight-derived closed-loop unstructured stability margins

(I + GA) -1G for aileron and yaw-vectored-thrust inputs 30 °, 40% 50 °, and 60 ° AOA.
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Figure 37. Closed-loop uncertainty description of input sensitivity.

of perturbed plant

45



Absolute

magnitude

Absolute

magnitude

Absoluto

magnitude

Absolute

magnitude

10 2

101

10 0

10-1

10 2

101

10 0

10-1

10 2

101

10 0

___ --_- Flight.derived

D

__=

30 ° AOA

t I t

__=

"_-_ _ \,-_v _/\,_/

-- 40 ° AOA

I I J

_. 50 ° AOA

I I J10-1

lO2 _=

lO1 --

10 0 ... .... _ /_.," _[_
E

60 ° AOA

10-1 I I I
5 10 15 20

Frequency, Hz
9'80162

Figure 38. Predicted and flight-derived closed-loop structured stability margins of perturbed plant

for aileron and yaw-vectored-thrust inputs 30 °, 40 °, 50 °, and 60 ° AOA.
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Figure 39. Closed-loop uncertainty description of input response to input commands.
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CONCLUSIONS

Thrust vectoring at high angle of attack (AOA) adds considerable uncertainty to the standard aeroservoelastic

(ASE) modeling assumptions. Efforts to refine linear unsteady aerodynamics based on potential airflow are
unwarranted because this refinement does not improve the aeroelastic model accuracy. Therefore, precise

servoelastic modeling for the purpose of validation with ground test results should be emphasized. Detailed

actuation modeling, careful control-system augmentation, and verified feedback sensor responses are critical in

properly accounting for the servoelastic coupling mechanisms. Safety of flight demands a variety of stability

analyses to study the consequences of model error, and control-system augmentation depends on the type of stability

analyses performed. These issues are important for any AOA, but they become more relevant for high-AOA flight at
generally low dynamic pressure because of the negligible impact of modeling unsteady aerodynamic forces. At

higher dynamic pressure and low AOA, the impact of unsteady aerodynamics may dominate many servoelastic

dynamic coupling mechanisms, thereby reducing the criticality of these dynamics in stability and response analyses.

This is evidenced by past experiences with successful ASE envelope clearance programs.

Comparisons of flight-derived and predicted modal data, transfer functions, and stability margins generally

indicate good correlation. Some lateral-directional discrepancies in robust stability margins prevail throughout the
buffet regime of 20 ° to 50 ° AOA, but these discrepancies are not significant. A noticeable improvement in matches

between the model and flight-derived results occurs above 50 ° AOA. Hence, the influence of buffet acting as an

unmodeled persistent disturbance is judged to be the overwhelming source of match disagreement. Regardless,
servoelastic modeling and analysis retain the essential ingredients for high-AOA aeroservoelasticity.

D_. den Flight Research Center

National Aeronautics and Space Administration

Edwards, California, November 11, 1995
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APPENDIX A

ACTUATOR MODELING PROCEDURE

servovalve port width

main ram piston area

output structural damping

attachment structural damping

nAp 2 V T
+

k r 4N

general flow coefficient

actuator fluid flow pressure constant

P_-_- Prmain valve flow coefficient, = _ a

externally applied force

ram position feedback gain to servovalve

output structural stiffness

attachment structural stiffness

1 1
combined output/attachment structural stiffness, = -

k l + "£'s

aero stiffness, aero damping, and control surface mass

modal stiffness, damping, and mass

mass of main ram piston

mass of main ram body assembly

bulk modulus

number of hydraulic systems operating

pressure difference across piston, = P1 - P2

return pressure

supply pressure

ram pressure on attachment side

ram pressure on output side

servoactuator model filter states

total fluid volume in one actuator hydraulic system

actuator ram moment arm

actuator demand from control system
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x l

Xp

X s

X v

x 0

x 1

actuator ram displacement

displacement of piston relative to main ram body, = x 1 - Xs

actuator body displacement

of main control valvedisplacement

displacement

displacement

8 actual control

of control surface mass

of structural modal mass

x 0
surface rotation, = - --

x h

x i
_d demanded control surface rotation, = - --

X S

servoactuator model filter time constants

The F/A-18 control actuation devices are redundant hydromechanical servomechanisms powered by 3000 lb/in 2

hydraulic systems. Normal hydraulic system return pressure is 85 lb/in 2, but each actuator operates at 235 lb/in 2

return pressure before dropping an additional 150 lb/in 2 at the supplied switching valves. Table A-1 lists the
functional characteristics. The aileron, rudder, and turning vane actuators are operationally equivalent (they have the

same ram configuration and servovalve mechanism), but they differ functionally because of dimensions. The
leading-edge flap is a rotary mechanical system. The aileron actuation operation is the most popular on the aircraft

because of its simplicity, so it was chosen to demonstrate the comprehensive modeling procedure.

Table A-1. F/A-18 actuation system functional characteristics.

Vanes and Trailing-edge

Parameter ailerons Rudder Stabilator flap

Output force (lb)

Surface deflection (deg)

Piston area (in 2)

Stroke (in.)

Max horn arm (in.)

Output velocity (in/sec)

Surface rate (deg/sec)

Loop gain (sec -l)

Dynamic stiffness (xl0 5)

Maximum free play (deg)

Hydraulic flow (gal/min)

13,100 Ext 15,740 Ext 29,940 Ext 18,070 Ext

12,090 Ret 13,880 Ret 27,250 Ret 14,330 Ret

70.0 60.0 34.5 53.0

4.71 Ext 5.64 Ext 10.50 Ext 6.16 Ext

4.40 Ret 5.07 Ret 9.72 Ret 4.95 Ret

4.38 1.43 7.12 8.12

4.0 aileron

9.2 vane

6.70 1.33 7.40 2.76

100.0 56.0 40.0 18.0

48 37 30 18

2.7 Ib/in 6.0 lb/in 2.0 lb/in 0.9 lb/in

0.126 0.573 0.10 0.573

8.1 2.1 19.8 4.4
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Methodsfor includingdetailednonlinearactuationsystemmodelsin ASEsimulationanalysesarecitedin
references24and25.Foralinearanalysisoftheactuationsystem,thefollowingassumptionsaremade(ref.26):

• Linearvalveflow

• Novalveoverlapsorunderlaps

• Parallel-sidedvalveport

• Equalfluidvolumesoneachsideofthemainrampistons

• Equalareasoneachsideofthemainrampistons

• Nosteadyloadonram
• No frictions,backlash,orhysteresis

• Nolimitsencountered

Small-amplitudecharacteristicsareaffectedby overlap,hysteresis,friction,andbacklash,andlarge-amplitude
motionis influencedbylimitsandportshape•Thisformulationdoesnotincludetheeffectsofadynamicleakvalve
(pressurefeedbackmodulator)toreduceinteractionwithstructuralmodesbecauseit isnegligiblefor anaccurate
linearanalysis.

Linearmodelingbeginsbyseparatingelementsoftheactuationsystemintoaplant,containingmechanicaland
hydrauliccomponents,anda feedbacksystemcomprisingservovalveandmainramfeedback.Figures10(a)
and10(b)showgenericconfigurationsof theplantandfeedbackelements.Servovalvedynamicsareassumedtobe
firstordercombinedwithaninnerlooppositionfeedback.Theouterlooppositionfeedbackof therelativemotion
betweentherampistonandactuatorcylinderbodycontrolsrampositionaccordingtoexternaldemandx i from the
control system• An overall actuator dynamic stiffness results from the attachment to the airframe and the lever arm
attachment to the control surface. Damping comes from these attachments as well as structural mode, aerodynamic,

and hydraulic origins• External force Fe may act on the main mass from a ground impedance test to check stiffness•

Flow continuity through the servovalve to force the piston is determined by flow through the valve ports, flow
caused by the motion of the piston, and flow caused by fluid compressibility (bulk modulus). The derivation of linear
actuation models is valid for multiple hydraulic systems using the same actuator. The systems are assumed to be
identical, and the output force produced by the ram is multiplied by n, the number of operating systems. In matrix

form, the plant equations become:

x0

x 0

x 1

x 1
\

Ap

-b h 0 - C_1 0 0

0 0 1 0 0

nA__.£p k 0 + k I b 0 + b I k.__.l b._.}_l

m 0 m 0 m 0 m 0 m 0
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k I bl kl bl
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m I m I m I m 1
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Thesignconventionassumesthatactuatorextensionalwaysgivesnegativehingemomentandcontrolrotation.By
augmentingthisplantdescriptionwiththeservovalveandramfeedback(fig. 10(b)),theF/A-18aileronactuator
equationsbecomethefollowing(whereX denotes a nonzero value):

s 2

s 1

s o

Pj

X 0 =

,•

x 0

x I

x 1

k s3

r a

k Xp

1 0 0 0 0 0 0 0 X

"_2

x -ix o o o o o o
"C1

0 1 0 0 0 0 0 0 0

Ap

0 0 X -b h 0 - C---_1 0 0 0

0 0 0 0 0 1 0 0 0

nAp k0 + k 1 b 0 + b I k I b 1
0 0 0 _ -- 0

m 0 m 0 m 0 m 0 m 0

0 0 0 0 0 0 0 1 0

k I b 1 kl b 1
0 0 0 0 _ _ 0

m I m I m 1 m 1

0 0 0 X X 0 0 0
"_3

1
0 0 0 0 0 0 0 0

x h

1
0 0 0 0 0 0 0 0

x h

nAp0 0 0 _ 1 0 0 0
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s O
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• I
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s2 I

iix 0
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Ix 1

s3}

-x h G
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0

0

+ 0
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0

0
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Given the extensive assumptions for linearity and ignoring other system components such as a dynamic leak valve,

damper accumulator, or some other pressure feedback modulation, the model is not expected to match measured

results exactly. A model for friction would generally add some damping. In addition, the fluid coefficients Cp, C v,

and Cf are susceptible to error, and the fluid bulk modulus N may differ depending on the type of operating system
(ref. 27). These parameters may be tuned to match test data. For the F/A-18 actuators, the servovalve port width a

(or equivalently, the main valve flow coefficient Cv) and fluid flow pressure constant Cp required adjustment to
account for variations in valve port shape and size.
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APPENDIX B

CONTROLS AUGMENTATION

Discretization and Time Delays

The ASE model realization differs according to the desired goals. References 28 and 29 explain how to model

hybrid continuous and discrete systems subject to arbitrary delays and multiple (possibly asynchronous) sample

rates for frequency response analyses. Time response and eigenvalue analyses are performed by discretizing the

plant at the highest loop sample rate, 1/T, using the method of zero-order hold (ZOH) equivalence (matrix

exponential), and the method described in reference 30 to incorporate control processor time delay x = mT-_.,

where Tis the sample time, m is an integer, and X is a fractional delay difference (assuming m > 0 and 0 < _. < T).

Treatment of the case m = 0, z = -X is actually prediction and will not be discussed. Here, we consider only the

case m = 1, _. :_ 0. First, define

,4T
= e , F 1 = eAtB dt, I"2 = eAtB dt

For any positive scalar a define

_a 1 r eTttdt¢P(a) = e , W(a) =
aJo

Next write

F 1 = _(_,)'ff'(T- _.)(T- _.)B

F 2 = $(_.)_,B

Only the exponential series for _u need be computed because it can be shown that

• (a) = 1 + tF(a)aA

The state equations are now given by

x(k + 1) = _x(k) + FlU(k- 1) + F2u(k)

Define the new state xn ÷ l(k) = u(k - 1 ) to form the new system

x n + l(k + 1) xn+ 1(k)

E 01(x/y = + Du(k)
Xn+l

The formulation now adds delayed control input to the state vector for delay times less than the smallest loop sample

time, appears computationally attractive, and requires no approximation (as opposed to the common technique
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whichuseslow-orderPad6approximatesfor delays).This plantdescriptionis usedfor computationof time
responsesandopen-loopeigenvalues.

ZOH andtimedelaysaretreateddifferentlyin frequencyresponseanalyses.PlantdynamicsareLaplace
transformedandaugmentedwithanalogelements,includingsensorsandprefilters,usingstandardprocedures.Then,
thecontinuoussystemwithtimedelayx is formulated as

y(s) = lH(s)[_OH])u(s )

= H*(s,x, T)u(s)

where

s = Laplace variable

H(s) = IC(sI-A)-' B+D]
g

[ZOH] = is the zero-order hold complex expression [=

and where H*(s, x, T) is now the plant transfer function for all continuous dynamics.

Digital Filter Realization

Because digital filter realizations are critical to the validity of the model, the implementation of discrete filters

in the flight computer hardware is considered more important than the problem of approximating the action of an

analog element on a continuous waveform with a linear digital filter operating on a sampled continuous waveform.

The former realization can differ significantly from the latter, which is the correct duplication of elements such as

sensors and prefilters. Consequently, if the computer software uses the standard z transform discretization, this

realization should be used in the analysis. Alternatively, because the z transform suffers drawbacks caused by power

aliasing about the Nyquist frequency and the implementation of high-pass filters, another discretization should be

used for the analog elements if the objective is time response or eigenvalue checks. A technique that performs

extremely well in flight simulations is based on the bilinear transformation but gives the same pole and zero locations

as the matched z transform algorithm, with additional zeros added at z = -1 for all s-plane zeros at infinity. Given

the continuous transfer function Gs(s), the poles and zeros contained in the primary strip of the s-plane are mapped

into the left half of the intermediate w-plane with the complex transformation

w = tanh sTD
2

This maps a root located at s = o + iE to the w-plane root w = l.t + irl, where

sinh c_T sin ET
la = coshoT+ cosET' 11 = coshcT+coseT
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TheintermediateresultGw(w) is a mapping of the s-plane imaginary axis from -(n/T) to rt/T onto the entire

imaginary axis of the w-plane from -,,_ to oo. The s-plane negative real axis maps onto the w-plane negative real

axis from 0 to -1. Now the function Gw(w) is mapped into the unit circle of the z-plane with

1 +W
Z --

1 - w

to the z-plane location

2 2

Re(z)- 1-_ +_ lm(z)- 2rl

(1 - _t)2 + rl 2 ' (1 - la)2 + rl 2

sT

This results in a mapping from s-plane to z-plane where the poles and zeros are related by z = e and infinite
s-plane zeros are mapped to z = -1. Computationally, the complete algorithm is stated as transforming the

continuous Gs(S) given by

Gs(s) =

KsFlU= 1 (s + t_i)l"l i = 1 (s + b

i = 1 (s + _i)I'Ii = 1 (s + ci )2 + d

to the digital filter

k u

Kz(Z + l ) Hi=

Gz(z) =

/e iT/nnEI 2oT1]1 Z - i = 1 Z2 - 2e cosbiTz + e

I [I cT  e2CTllr -- 2e cosdiTz
I-Ii= 1 z-e _]Ii= 1 z2

where k = r + 2t - u - 2n, k > 0, and K z is the normalization constant such that for unity gain low-pass filters,

Gz(z = 1) = 1 and for high-pass filters, Gz(z =-1 ) = 1. Integral time delays are represented by the n unit

delays z-nGz(z). This algorithm, similar to matched pole-zero mapping, gives good time response accuracy with

its continuous equivalent. It cannot be used for multi-input-multi-output (MIMO) transfer functions, so each single-

input-single-output (SISO) analog element is treated separately. A practical consideration for numerical accuracy

when augmenting these transfer functions is to limit the denominator order to second or third so the range of

coefficient magnitudes is kept reasonable in the numerator and denominator.

Muitirate Representation

Feedback for the F/A-18 basic and RFCS control laws, longitudinal and lateral-directional, is a mixture of

80-Hz and 40-Hz sampling rates. Figure 14(a) shows a simple schematic of the procedure for modeling hybrid

multirate systems for frequency response analyses. In this model, the feedback is sampled at 1/T 3 and 1/T 4, the

reference and error signals are sampled at 1/T, and control surfaces are commanded at 1/T 1 and 1/T 2,

designated in the ZOH. The 1/T factor in the ZOH is derived by taking the limit of a sampled spectrum as the

sample time goes to zero, thereby resulting in the continuous spectrum of the discretely excited plant. Aircraft

dynamics are described by Laplace transformed state equations, so system transfer functions are all well-defined

functions of the Laplace variable s similar to the single-rate hybrid formulation.
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In the RFCS control laws, where sample time T = 0.0125, slower rate 40-Hz feedback is converted to faster

1 +z sT
80-Hz signals using discrete memory averagers M(z) = "_-z ' where z = e . The multirate character of feedback

is disguised, and all digital filters Gi(z) can be implemented as 80-Hz discretizations. Averagers are generally

represented by

n-1

zk

,,,_JA'f_z_= k=0
n-1

nz

where the rate ratio n = Ti/T is an integer. Discrete memory M(z) is also used for stability and time response

analysis of multirate systems. Figure 14 shows two different multirate implementations for eigenvalue analyses. In

figure 14(b), plant dynamics are discretized at the fastest rate 1/T using zero-order hold equivalence and slower

feedback are passed through the appropriate M(z). Any filters Gi(z) calculated and implemented for slower

rate signals substitute z = e sTi. Slow rate control commands are also averaged before being passed to the actuator.

Alternatively, in figure 14(c), plant dynamics are discretized at the slowest rate and any internal fast rate loops and

fast control commands are augmented with M -1 (z), the inverse of M(z). The substitution of z = e sTi in the fast

filters follows accordingly. In the case of the RFCS control laws, the fast controller formulation matched the

measured ground test results more closely than the slow rate formulation did.
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